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ABSTRACT: The optimal control policies for a polymer-
ization process, particularly for batch free-radical polymer-
ization of methyl methacrylate, were determined using a
multiobjective optimization technique. The process objec-
tives considered in the optimization include monomer con-
version, polydispersity index, polymerization degree, and
total reaction time, weighted and combined in a scalar ob-
jective function. The decision variables were the initial con-
centration of the initiator and the temperature represented
by isothermal steps. For solving the optimization problem,
several methods based on sequential quadratic program-
ming and a genetic algorithm were used and compared.

Combining them into a hybrid method (the genetic algo-
rithm provided the initial values for the traditional iterative
method) led to the best results. The aims of this study were
to develop an approach for optimizing the polymerization
process and to describe alternatives for formulating and
solving this problem, emphasizing the importance of user
decision in choosing solutions based on technological crite-
ria. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3680–3695,
2006

Key words: radical polymerization; computer modeling; op-
timization; genetic algorithms

INTRODUCTION

Process optimization can have a significant strategic
impact on polymer plant operability and economics.
Polymer production facilities face increasing pressures
for production cost reductions and higher-quality re-
quirements. The demand for polymer products having
specific predetermined properties requires the control
of microscopic characteristics during the reaction as
post-treatments are expensive and not efficient in
many respects. The main mechanical and thermal
properties of polymeric products are correlated with
molecular weight and molecular weight distribution.
These two important parameters characterizing poly-
mer quality can be controlled by adopting a suitable
operating strategy for the reactor and by choosing the
initial conditions of the operation.

The batch polymerization technique is widely used
in industry for its availability and flexibility in opera-
tion. Being able to assure a product that has constant
properties is particularly difficult in batch reactors, in
which large changes occur in the concentrations and
reactivities of different species and in the physical
properties of a system during a reaction. For example,
in free-radical polymerization carried out in concen-

trated solution and in bulk, increased viscosity leads
to so-called gel and glass effects. Both phenomena can
have an important effect on the reaction rate and
molecular weight distribution of the polymer. The
final product is a mixture of polymer chains that were
formed in very different situations during the batch.
The deficiency of accurate online sensors for the mea-
surement of polymer properties coupled with the non-
linearity of the system’s behavior represents others
drawbacks of batch and semibatch polymerization re-
actor control. Therefore, the precise control of polymer
properties during the batch manufacture process re-
quires advanced techniques for specification of opti-
mal control strategies.

There have been many attempts to optimize batch
polymerization because of the numerous and complex
problems involved: different types of optimization
problems regarding objectives and decision variables,
mathematical solving methods, and mathematical
models included in the optimization procedure, as
well as the recent problem of multiobjective optimiza-
tion accomplished in a vectorial or scalar fashion.

In addition to control of polymer quality, global
optimization requires the achievement of high pro-
ductivity (high conversion, short reaction time) and
respect for operations safety. The commonly studied
optimization problem is to obtain reaction conditions
that minimize the total reaction time and/or the poly-
dispersity index of the polymer, while simultaneously
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requiring the final monomer conversion and the final
number-average chain length to meet certain specifi-
cations (called desired values).1–5 Some approaches
have included minimizing residual monomer and ini-
tiator, which can affect the end-use properties of the
polymer.6,7 Special attention is given to optimal con-
trol of molecular weight distribution as one of the
important polymer property indices.8,9

To obtain a polymeric material with a prespecified
molecular weight and other important properties, at
least two decision variables should be manipulated:
initiator or monomer addition and reactor tempera-
ture. Consideration of constraints in industrial reac-
tors is very important for defining the range of varia-
tion of parameters and for being able to disregard
possible solutions that might be interesting only in a
theoretical approach to the problem.

The optimization of batch free-radical polymeriza-
tion is multiobjective in nature because it normally has
several objectives that must be satisfied at the same
time. The performance of the system depends on a
large number of criteria, which are often conflicting
and noncommensurable. In the last several years re-
search on the optimization of polymerization reactors
using multiple objective functions and constraints and
its use in online optimizing control has been reported
in the literature.4,6,7

Multiobjective optimization can be defined as the
problem of finding a vector of decision variables that
satisfy constraints and optimize a vector function
whose elements represent the objectives’ functions. In
such cases, instead of obtaining a unique optimal so-
lution, a set of equally good optimal solutions is usu-
ally obtained. These are referred to as Pareto sets. A
decision maker can choose any one of these nondomi-
nant optimal solutions based on additional informa-
tion.10 So, multiobjective optimization can be consid-
ered as being carried out in two phases: an objective,
or mathematical phase and a subjective, or decision-
making phase. Some examples of the vectorial ap-
proach to multiobjective optimization for polymeriza-
tion reactors are given in Garg et al.,5 Merquior et al.,7

and Zhou et al.10

A great number of multiobjective optimization
problems have been studied in terms of a single scalar
objective function that combines all identifiable per-
formance measures with appropriate weighting fac-
tors.3,4,6,11 This “scalarization” of a vector objective
function allows simple algorithms to be used for solv-
ing the problem but suffers from several drawbacks.
One is that the results depend largely on the values of
the weighting factors used, which are difficult to as-
sign on an a priori basis. Even more important is the
risk of losing some optimal solutions.10

Computer-aided optimization methods have been
widely employed in chemical process industries. Tra-
ditional optimization methods can be classified into

two distinct groups: direct and gradient-based meth-
ods. In direct search methods, only objective function
and constraint values are used to guide the search
strategy, whereas gradient-based methods use first-
and/or second-order derivatives of the objective func-
tion and/or constraints to guide the search process.
Because derivative information is not used, direct
search methods are usually slow, requiring many
function evaluations for convergence. For the same
reason, they can be applied to many problems without
a major change in the algorithm. On the other hand,
gradient-based methods quickly converge to an opti-
mal solution but are not efficient in nondifferentiable
or discontinuous problems.12 Deb emphasized some
of the common difficulties with most of the traditional
direct and gradient-based techniques: (1) the conver-
gence to an optimal solution depends on the chosen
initial solution; (2) most algorithms tend to get stuck to
a suboptimal solution; and (3) an algorithm efficient in
solving one optimization problem may not be efficient
in solving a different optimization problem.12 Most of
the studies on optimization of polymerization reactors
have used classical optimization methods.8,9,11,13

In recent years, because of the rapid progress in the
computing technology available, new numerical
search algorithms are becoming popular. In particular,
there is a growing interest in optimization techniques
based on genetic and evolutionary algorithms. Be-
cause of their flexibility, ease of operation, minimal
requirements, and global perspective, these algo-
rithms have been successfully used in a wide variety
of multiobjective problems.14 Multiobjective optimiza-
tion of polymerization processes is an example of their
application.3,4,5,10,14,15 These techniques do not need
any initial guesses and converge to the global opti-
mum even when with several local optima present. In
addition, genetic algorithms use information about the
objective function and not its derivatives (such as with
traditional optimization techniques), nor do they re-
quire any other auxiliary knowledge.10 Different types
of genetic algorithms and their applications in chem-
ical reaction engineering, including polymerization
processes, have been described in some review
works.16–19

In the present study, we explored the feasibility of
an optimizing control scheme for a sample polymer-
ization system, poly(methyl methacrylate) (PMMA).
The procedure developed could easily be used for
other free-radical polymerization reactors. The same
problem has been approached differently by different
research groups. Ahn et al.11 applied optimal control
theory with Pontryagin’s minimum principle to calcu-
late the optimal temperature trajectory for a batch
MMA polymerization reactor system that would lead
to a polymer product having the desired properties
(monomer conversion and number- and weight-aver-
age molecular weights) set a priori. Chakravarthy et
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al.3 used an genetic algorithm to obtain optimal tem-
perature histories for methyl methacrylate polymer-
izations. The reaction time was minimized while si-
multaneously requiring attainment of design values of
the final monomer conversion and number-average
chain length. Garg et al.4 established the feasibility of
implementing online optimizing control of free-radi-
cal polymerization reactors (PMMA semibatch reac-
tors) in order to produce polymers of the desired
properties in the shortest reaction time. An genetic
algorithm was used for this purpose. All three of these
attempts used a scalar multiobjective function. Garg
and Gupta5 developed a multiobjective optimization
technique for free-radical bulk polymerization reac-
tors (MMA polymerization) using a nondominated
sorting genetic algorithm. The two objective functions
that were minimized were total reaction time and the
polydispersity index of the polymer product.

Our approach used a complete model for batch,
bulk MMA polymerization, a multiobjective function
in a scalar form, which includes minimization of reac-
tion time, minimization of polydispersity index, and
achievement of some desired values for conversion
and number-average polymerization degree. Three
optimization methods were used for comparison: a
traditional method based on sequential quadratic pro-
gramming, a genetic algorithm, and a hybrid method
that combined the first two approaches. The difficult
task of choosing the appropriate weights enabled
pointing out some of the proposed objectives. On the
basis of the technique used and the results obtained,
this study has demonstrated that the hybrid method
favors scalarization of the objective function. Choos-
ing the weights of the objective function can be con-
sidered in the scalar optimization as the equivalent of
the decision-making phase in the vectorial multiobjec-
tive optimization, with an additional level of difficulty
for the former.

Unlike other articles that focused on particular as-
pects of optimization, our article includes most poly-
merization objectives and a complete mathematic
model for polymerization exhibiting gel and glass ef-
fects. Also, the optimal solution is represented by two
or three temperature steps, three solving methods are
used and compared, and the influence of weights in
optimization is emphasized. In addition, the associa-
tion between a scalar objective function and a hybrid
solving method for the optimization problem can be
considered an acceptable alternative to multiobjective
optimization because of its simplicity and its accurate
results. In the following, an optimization method
based on a scalar objective function in which the
weights of the objectives must be chosen and on a
hybrid solving method that combines the advantages
of sequential quadratic programming and genetic al-
gorithm is illustrated on a polymerization process.

Model development

Chemical-initiated free-radical polymerization of
methyl methacrylate (MMA) is considered to occur in
a batch bulk process. This system follows the standard
kinetic scheme, which includes formation of reactive
radicals by decomposition of the initiator [azobi-
sisobutyronitrile (AIBN)], the reactive addition of
monomer units to radical polymer chains in the prop-
agation step, deactivation of polymer radicals by re-
action with other polymer radicals in the termination
step (disproportionation), and chain transfer to mono-
mer, shown in Table I, where I, M, and R* represent
the initiator, monomer, and primary radical, respec-
tively; Pn

* and Dn are the macroradical and the dead
polymer with n monomer units, respectively; and kd,
ki, kp, ktm, and kt are the rate constants for the initiator
decomposition, initiation, propagation, chain transfer
to monomer, and termination by disproportionation,
respectively.

The mass balance equations for monomer conver-
sion, x, initiator concentration, I, and moments of
chain length for radicals, �k, and dead polymer, �k (k
� 0,1,2), represent the kinetic model of the polymer-
ization process:

dI
dt � � kdI � I�

1 � x
1 � �x �0�kp � ktm� �1� (1)

dx
dt � �kp � ktm��1 � x��0 (2)

d�0

dt � 2fkdI � kt�0
2 � �0

2�
1 � x
1 � �x �kp � ktm� (3)

d�1

dt � 2fkdI � kpM0

1 � x
1 � �x �0 � kt�0�1

� �0�1�
1 � x

1 � �x �kp � ktm� �

� ktmM0

1 � x
1 � �x ��1 � �0� (4)

TABLE I
Kinetic Scheme for MMA Free-Radical Polymerization

Initiation � 1¡
kd

2R*

R* � M¡
ki

P*1

Propagation P*n � M ¡
kp

P*n � 1

Chain transfer to monomer *Pn � MO¡
ktm

Dn � P*1
Termination by

disproportionation P*n � P*mO¡
kt

Dn � Dm
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d�2

dt � 2fkdI � kpM0

1 � x
1 � �x �2�1 � �0� � kt�0�2

� �2�0�
1 � x

1 � �x �kp � ktm� �

� ktmM0

1 � x
1 � �x ��2 � �0� (5)

d�0

dt � kt�0
2 � �0�0�

1 � x
1 � �x �kp � ktm� � ktmM0

1 � x
1 � �x �0

(6)

d�1

dt � kt�0�1 � �1�0�
1 � x
1 � �x �kp � ktm�

� ktmM0

1 � x
1 � �x �1 (7)

d�2

dt � kt�0�2 � �2�0�
1 � x
1 � �x �kp � ktm�

� ktmM0

1 � x
1 � �x �2 (8)

where it is assumed that no monomer is consumed in
the initiation process and that the quasi-steady state
approximation for the initiator fragment balance is
valid and where � is a parameter accounting for the
variation in volume that accompanies polymerization;
f is the initiator efficiency; and M0 is the monomer
concentration at time t � 0.

Gel, glass, and cage effects are exhibited in the bulk
polymerization of MMA. The gel effect arises because
of the decrease in the termination rate constant at high
monomer conversion, associated with increased diffu-
sional resistance to the growing radicals. It is mani-
fested as a sudden increase in conversion, as well as in
weight-average molecular weight with time, after
some polymerization has occurred. Similarly, the glass
effect is associated with a decrease in the propagation
rate constant because of increased diffusional resis-
tance to the movement of the monomer toward a
growing radical. This leads to the polymerization
stopping short of complete monomer conversion, even
though the reactions are irreversible.

To describe the decrease in the termination (kt) and
propagation (kp) rate constants during polymerization,
Chiu et al.20 proposed models that consider diffu-
sional constraints as an integral part of these reactions
even from the beginning of the process:

1
kt

�
1

kt0
� �t

�0

exp� 2.303(1�x)
A � B�1 � x)�

(9)

1
kp

�
1

kp0
� �p

�0

exp� 2.303(1�x)
A � B�1 � x)�

(10)

�t �
�t

0

I0
exp�E�t

RT� (11)

�p � �p
0exp�E�p

RT� (12)

A � C1 � C2�T � Tgp�
2 (13)

where kt0 and kp0 are the rate constants for termination
and propagation, respectively, in the absence of the
gel and glass effects; �t and �p are the characteristic
migration times; �t

0 and �p
0 are the preexponential fac-

tors for �t and �p; E�t
and E�p are the activation energies

for �t and �p; T is the temperature; Tgp is the glass-
transition temperature of the polymer; B, C1, and C2
are the constants; and R is the universal gas constant.

For the rate constant of chain transfer to monomer,
a decrease similar to that of the propagation rate con-
stant was proposed13 because both reactions involve
the same diffusion mechanism—monomer molecules
migrating toward the growing macroradicals:

ktm � ktm0

kp

kp0
(14)

where ktm0 is the rate constant for chain transfer to
monomer in the absence of the glass effect.

Genetic algorithm

Genetic algorithm (GA) is a problem-solving tech-
nique inspired by the process of natural evolution, in
which the fittest species survive and propagate,
whereas the less successful tend to disappear. The
main idea is to represent a set of potential solutions as
a population of individuals represented by chromo-
somes. The chromosomes in GA are similar to biolog-
ical chromosomes, as their genes reflect different as-
pects of the solution. Chromosomes consist of genes,
which are blocks of DNA. Each gene produces a par-
ticular protein that will shape a certain trait. Possible
variations of a gene are called alleles. Each gene has its
own position in the chromosome, called a locus. The
complete set of genetic material (all chromosomes) is
called the genome.

Unlike other methods, evolution is not a directed
process but an heuristic one, in which the purpose of
the individuals is to compete in order to propagate
their genetic material to the next generation. In the
biological case, the fitness of an individual results
from its interaction with the environment. Genetic
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algorithms use a fitness function instead to compute
how close a potential solution is to the desired solu-
tion.

The three fundamental procedures in a typical ge-
netic algorithm are selection, crossover, and mutation.

Selection establishes the way in which parents will
be chosen for the offspring that will form the next
generation. In this phase, the fitness of all individuals
in the population is evaluated. Individuals with
higher fitness must have more chances to reproduce.
For each individual to be created in the next genera-
tion, two parents are thus selected.

Crossover is the operation that ensures the genetic
diversity of the population. After two parents have
been selected, their chromosomes are combined to
produce an offspring. In nature, crossover occurs
when corresponding chromosomes of a parent ex-
change genetic material by the breaking and reuniting
of DNA molecules. In this case, each parent has two
strings of chromosomes (the double helix), and one
string from a parent is combined with one string from
the other. In GA, an individual has only one set of
chromosomes. Thus, the chromosome of the offspring
is built by taking different parts of the parents’ chro-
mosomes and binding them together. The many vari-
ants for performing this operation largely depend on
the problem.

After crossover, a small change in the chromosome
of the offspring can be applied. The importance of this
operation—mutation—is still a matter of debate. It is
believed that its role is to get the system out of local
extremes or to accelerate convergence, although ge-
netic algorithms do not need differential functions and
gradient descendent methods for convergence.

The first generation is randomly generated. Then,
using the above operations, a new population is cre-
ated. The old population is abandoned, and the sub-
sequent generation is produced using the new popu-
lation. There is no theoretical reason for this clear
distinction between generations. There is no such phe-
nomenon in nature, where individuals from different
generations usually coexist. This restriction is only an
implementation model that simplifies the computa-
tion. The process is repeated until a convenient solu-
tion is found. Normally, the best (fittest) individual of
its generation represents the solution given by the
genetic algorithm at a certain moment.

Although GAs rely highly on stochastic processes
(selection, crossover, and mutation are performed
with certain probability rates), they are not random
searches. Evolutionary mechanisms definitely have
better results than random exploration, and these re-
sults are achieved with faster convergence.

Given that the overall structure of a GA is somehow
standardized, solution encoding remains the most dif-
ficult part of the design because it highly depends on
the problem. More natural encoding is more efficient

and produces better solutions. A number of represen-
tations have been successfully used in different situa-
tions: binary encoding, permutation encoding, value
encoding, tree encoding.

Considering the population size, it was discovered
that very big population usually did not improve the
performance of GA. An acceptable population size is
about 20–30; however, sometimes 50–100 has been
reported as best.

Description of GA model

In our GA model, we used real value encoding for the
chromosomes. There are other approaches for MMA
polymerization using binary solution representation,3

as it is the simplest type of encoding, in which chro-
mosomes are composed only of ones and zeros. Thus,
even the number of alleles is rather small (two), so this
encoding is very common because it is very easy to
use. However, value encoding is more general because
genes are real numbers. Some experiments21 have
shown that real-value encoding is more time efficient,
with better precision of the solutions.

Binary encoding is a frequent choice in genetic al-
gorithms. It has the advantage of simplicity, and it is
reminiscent of the four-nucleotide alphabet of the bi-
ological DNA. However, it may not yield optimal
performance for problems such as ours that involve
real-number solutions. Even if crossover and mutation
operators are straightforward, this encoding may have
several disadvantages. Binary encoding utilizes the
representational capabilities of a positional number
system, in which the leftmost digits are more impor-
tant than the rightmost ones. When mutation is per-
formed, any digit may be changed with equal proba-
bility, that is, a small change is equally probable to a
big one. This may be beneficial at first, when the
population must explore greatly, but may prevent
quick convergence later on.

Real encoding is a better alternative for our optimi-
zation problem. Not only does it provide a more flex-
ible expression of parameter values, but the chromo-
somes have a more localized character, as they actu-
ally investigate definite regions of the solution space.
In this case, mutation mainly has the role of fine-
tuning the solution in order to increase precision. It is
the role of crossover to lead the actual search, which
seems more natural than the randomly generated di-
versity of mutation-based exploration.

We used a population of 30 individuals whose ini-
tial values were random numbers with uniform dis-
tribution between the lower and upper limit of the
parameters involved in the polymerization process.

A roulette-wheel selection technique was imple-
mented. In this strategy,22 the parents are selected
proportionally to their fitness. The probability of an
individual, i, being chosen is
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Pi �
Fi

�
j�1

n Fj

(15)

where Fi is the fitness of individual i and n is the
number of individual in the population. Because rou-
lette wheel is basically a stochastic process, there is a
good chance that the individual with the best fitness is
selected both as mother and as father. Thus, to dimin-
ish the loss of genetic diversity, we imposed a rule that
the two parents be different individuals.

We used arithmetic crossover with a probability of
0.8. Arithmetic real-value crossover produces a linear
combination of the parents. Given a uniform random
number r � [0,1],

C � r � M � �1 � r� � F (16)

or

C � r � F � �1 � r� � M (17)

where C is the real-value chromosome of the child,
and M and F are the chromosomes of the parents.

After a new individual has been created, a mutation
is performed on it. Given the chosen solution encod-
ing, we employed a uniform mutation that randomly
changed a gene to a uniform random value from a
interval: x�i � U(mini,maxi). The interval we used was
[0.95xI, 1.05xi], where xi is the current value of the
gene. We did not use absolute boundaries for the
interval in order to not constrain this genetic operator.

The GA parameters are summarized in Table II, in
which we used a predefined number of generations as
a termination criterion.

Formulation of optimization problem

The mass balance equations gave the following set of
ordinary differential equations:

dz
dt � f�z,u,t� z�t0� � z0 (18)

where z(t) is the state variable vector defined, for bulk
polymerization, by

z � �I,x,�0,�1,�2,�0,�1,�2� (19)

and u(t) is the control variable vector, with tempera-
ture and initial concentration of the initiator as com-
ponents:

u�t� � �T1,T2,I0� or u�t� � �T1,T2,T3,I0� (20)

An admissible control input, u*(t) should be formed in
such a way that the performance indices, J1 and J2,
defined by the following equations, are minimized:

Min J1�u�t�� � wt � tf � wx � �1 � xf� � wQ � Qf (21)

or

Min J2�u�t�� � wt � tf � wQ � Qf

� wx��1�
xf

xd
�2

� wDPn � �1 �
DPnf

DPnd
�2

(22)

subject to

dz/dt � f�z,u,t� (23)

umin � u�t� � umax (24)

where

DPn �
�1 � �1

�0 � �0
(25)

xf � x�tf� and DPnf � DPn�tf� (26)

where, in the above equation, J is the objective func-
tion to be minimized, w is the weighting factor, Q is
the polydispersity index, xd and DPnd are the desired
values of monomer conversion and number-average
chain length, respectively, at t � tf; and xf and DPnf are
the actual values corresponding to the final reaction
time, tf.

An important objective function for the polymeriza-
tion system is minimization of the final reaction time,
which leads to higher productivity. The other objec-
tive included in the same function is minimization of
the polydispersity index of the polymer product. This
ensures good physical properties of the polymer man-
ufactured. The end-point requirement on monomer
conversion forces the amount of unreacted monomer
to be small and hence keeps postreactor separation
and recycling costs low. The constraint on DPn leads to
the production of polymer with the desired properties
because several physical properties of polymers are
related to their values of DPn.

Many authors have suggested using vectorial objec-
tive functions, with which more solutions are ob-

TABLE II
Genetic Algorithm Parameters Used in MMA

Optimization

Population size 30 individuals
Maximum number of generations 100
Crossover probability 80%
Mutation probability 2%
Number of children/crossovers 1
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tained, each “specialized” for a certain criterion. Al-
though this approach has the benefit of emphasizing
the equilibrium regions of the decision space, eventu-
ally it is the user who must decide to choose an
appropriate solution if the problem requires a single
result. In our case, the user must take into account
several technological criteria. Using a scalar function
with user-chosen objective weights proved to be a
simpler approach, one better suited to our investiga-
tion. In addition, the hybrid method that combines
sequential quadratic programming with genetic algo-
rithm promoted the scalarization of objective function.
The discussion of the results will provide evidence of
these statements.

RESULTS AND DISCUSSION

A good process model is a necessary prerequisite for
application of the optimal control strategy. Conse-
quently, the kinetic model has been validated by ex-
perimental runs of bulk polymerization in a wide
range of operating conditions. Our previous
works23,24 found good agreement between the simu-
lation results and the experimental data.

At each step of the optimization procedure, model
equations were integrated using a special function for
solving stiff differential equation, ode15 from Matlab
7.0. Integration led to conversion and number- and
weight-average molecular weight histories for tinit � t
� tf.

The numerical values for solving the model of
MMA polymerization are given in Table III.

The polymerization process was conducted for a
fixed time of 400 s in a perfect-mix batch reactor. Limit
ranges for the reaction temperature, T, and the initia-
tor concentration feed, I0, were established on the
basis of the experimental data: 40°C � T � 90°C and
10 mol/m3 � I0 � 50 mol/m3.

The optimal control problem assumes determina-
tion of the nonisothermal temperature profile and the
initial operating conditions (total initiator concentra-
tion) in order to obtain maximum conversion and
minimum polydispersity index in a minimum reaction
time according to the objective function (function 21)
or to obtain the desired degree of polymerization, and
desired monomer conversion, minimum polydisper-
sity index in a minimum reaction time (function 22).
The optimization procedure was performed in parallel
for the two objective functions, J1 and J2.

One obvious problem with this approach, which
combines objectives into a single function, is that it
may be difficult to generate a set of weights that
properly scales the objectives when little is known
about the problem. A single weighted sum approach
requires a priori knowledge of the weights in order to
vary the emphasis given to each objective. Thus, our
results assumed the use of different values for the
weights of the objective function, accompanied by a
series of discussions whose main purpose was the
correlation of weight values with optimal solutions.
Although the objective functions do not have simple
forms (in the sense that they impose simultaneous
attainment of several objectives), choosing the best
weights according to the established main objectives is
not a difficult task because the best values of the
parameters are precisely known: polydispersity has an
ideal value of 1, conversion must be as close as possi-
ble to 1, and reaction time depends on temperature
and has a maximum of 400 s, imposed from the be-
ginning. In our optimization, for practical purposes,
the temperature profile was considered to be com-
posed of two or three isothermal steps.

Task level control was achieved by using nonlinear
programming (SQP method), a genetic algorithm, and
a hybrid method that combines them.

Sequential quadratic programming (SQP) method-
ology mimics Newton’s method for constrained opti-
mization in that at each major iteration, an approxi-
mation is made of the Hessian of the Lagrangian func-
tion using a quasi-Newton updating method. This is
then used to generate a QP subproblem whose solu-
tion is used to form a search direction for a line search
procedure. The method is implemented in Matlab
through the fmincon function.

The advantage of GA lies in its being able to work
without requiring much information about the sys-
tem, in contrast to traditional techniques, which need
gradients, initial guesses. In addition, the GA-based
method provides very good initial points for starting
other techniques that require excellent initial guesses
(SQP, in our case). We call this procedure the hybrid
method (HM). These three techniques were applied in
parallel for different types of objective functions and
different weights, emphasizing the best results from
these points of view (method, objectives, and

TABLE III
Parameters Used in MMA Polymerization

kd
0 � 1.053 	 1015 s�1 (for initiation with AIBN);
kp0

0 � 4.917 	 102 m3/(mol s);
kt0

0 � 9.8 	 104 m3/(mol s); ktm0
0 � 4.66 	 106 m3/(mol s);

Ed � 1.2845 	 105 J/mol;
Ep � 1.822 	 104 J/mol; Et � 2.937 	 103 J/mol;

Etm � 7.428 	 104 J/mol;
f � 0.58 (AIBN); � � [0.1946 � 0.16 	 10�3 	 T (°C)];

C1 � 0.15998; C2 � 7.812 	 10�6;
B � 0.03; Tgp � 387 K; �p

0 � 3.99822 	 10�12 s;
E�p � 1.02451 	 105 J/mol;

�t
0 � 2.8883 	 10�18 (mol s)/m3;
E�t � 1.48924 	 105 J/mol;

kd�kd
0 exp[�Ed/(RT)]; kp0 � kp0

0 exp[�Ep/(RT)];
kt0 � kt0 exp[�Et/(RT)];

ktm0 � ktm0
0 exp[�Etm/(RT)]
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weights). The genetic algorithm was also imple-
mented with Matlab.

The tables that show the results of the optimizations
contain the following columns: the current number to
which the optimization refers (this is why numbering
continues throughout different tables); the values of
the decision variables, I0 and T (two or three temper-
ature values), obtained from optimization; conversion,
x; time, t, in minutes; the polydispersity index, Q; the
number-average degree of polymerization, DPn (all
these resulted from solving the model in the condi-
tions, I0 and T, established through the optimization
procedure); the value of the objective function, J1 or J2,
and an observation column, which notes weight val-
ues and the method employed. The optimization
methods—SQP, GA, and HM—can also be identified
by the optimization number. Thus, n (n � 1,2…) iden-
tifies a GA-based optimization, n� shows an SQP op-
timization and n
 an optimization based on the HM,
meaning that the initial point of the SQP method was
found by the GA. In an optimization, two or three
values are shown for conversion and time. The first
one or two represent the values of the intermediate
steps of temperature, and the last—the value obtained
at the end of the reaction, when using optimal param-
eters. Also, particular cases of the objective function
are included in the tables by assigning zero values to
the weights of some objectives.

Table IV presents the optimization results achieved
with function J1, which aimed to minimize the reaction
time and the polydispersity index and to maximize
monomer conversion. For temperature as a decision
variable, two isothermal steps were set initially. Some

of these results are displayed in order to demonstrate
how results and weight values were chosen. User
decision was easy to make, given sufficient informa-
tion from the optimization results. Also, we consid-
ered this decision-making phase to be beneficial be-
cause it allowed the introduction of a technological
criterion, as optimization supposes the approximation
of reality by the mathematical model used and by
stating the optimization problem (choosing and as-
sembling the objectives into a function and choosing
the decision variables and the solving method). Select-
ing the conditions that corresponded to the minimum
of the objective function was not required, but select-
ing those that correspond to the established techno-
logical goals were. In this way, this article mainly aims
at presenting the methodology of optimization and at
discussing and comparing the computational methods
and the obtained results. The hybrid method was only
applied when that proved best chance to provide re-
sults worth considering.

It can be seen that the pair wx � 10 and wQ � 1 in
optimization 2, variant 2
, provided the best results—
high conversion and low polydispersity index. Opti-
mization 2 was performed with the GA method, 2�
with SQP, and 2
 with HM (SQP used solution 2 as its
initial values). These two optimizations, 2 and 2�, pro-
vided acceptable values for monomer conversion, but
high values for the polydispersity index. The hybrid
method enhanced the optimization results, also im-
proving polymer polydispersity.

Introducing time into objective function J1 in order
to minimize it is shown in case 3. The results in Table
IV demonstrate that time was not an important pa-

TABLE IV
Optimization of MMA Polymerization Achieved with Objective Function J1 in Two Temperature Steps

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn J1

Observations
(weights, method)

1 16 83.7 0.83 31.30 3.92 1610 4.01845 wx � 1; wQ � 1; wt � 0
54.5 0.90 81.03 GA

2 50 90 0.87 14.74 3.29 511 3.92415 wx � 10; wQ � 1;
66.2 0.94 60.09 wt � 0

GA
2� 10 80.6 0.38 34.68 4.55 1174 4.7121 wx � 10; wQ � 1;

90 0.98 73.87 wt � 0
SQP

2
 39.1 106.1 0.93 8.80 2.83 278 3.24374 wx � 10; wQ � 1;
74.8 0.96 35.38 wt � 0

HM
3 10.9 95.4 0.31 10.43 3.41 718 3.70249 wx � 10; wQ � 1;

103 0.99 38.98 wt � 10�4

GA
3� 10 82.7 0.39 30.82 4.56 1152 5.14191 wx � 10; wQ � 1;

90 0.98 69.72 wt � 10
SQP

4 18.3 70.3 0.17 26.53 1.99 1671 18.2366 wx � 10; wQ � 5;
42.2 0.17 26.64 wt � 0

GA
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rameter in MMA optimization; small values also were
obtained when wt � 0.

To increase the importance of the objective that
imposed the minimization of Q, we tried to increase
wQ in optimization 4. However, the results were not
acceptable, as improvement in Q greatly impeded the

conversion value. This characteristic is known to be an
effect of multiobjective optimization, that is, improv-
ing one objective implies deterioration of another.

The thermal regime obtained in optimization con-
tained an increasing or a decreasing number of temper-
ature steps. We considered as favorable a situation in

TABLE V
Optimization of MMA Polymerization Achieved with Objective Function J2 in Two Temperature Steps

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn J2

Observations
(weights, method)

5 38.2 59.6 0.28 73.6 5.81 1800 0.00496 wx � 10; wQ � 0; wt � 0;
67.1 0.94 148.6 wDPn � 500

xd � 0.96; DPnd � 1800
GA

5� 19.6 74.2 0.361 38.67 6.35 1800 0.00118 wx � 10; wQ � 0; wt � 0;
71.3 0.95 101 wDPn � 500

xd � 0.96; DPnd � 1800
SQP

5
 10.3 84.4 0.42 29.2 6.65 1800 2.22 	 10�8 wx � 10; wQ � 0; wt � 0;
75.7 0.96 83.8 wDPn � 500

xd � 0.96; DPnd � 1800
HM

6 30.3 57.9 0.54 125.1 7.04 1800 0.00096 wx � 10; wQ � 0;
71.6 0.95 177.8 wt � 0; wDPn � 50

xd � 0.96;
DPnd � 1800
GA

6� 10 81.9 0.72 39.9 5.05 1800 0.00021 wx � 10; wQ � 0;
77.7 0.96 85.6 wt � 0; wDPn � 50

xd � 0.96;
DPnd � 1800
SQP

7 22.2 77.5 0.63 37.4 8.39 357 0.01838 wx � 10; wQ � 1;
119.9 0.99 46.0 wt � 10�4; wDPn � 50;

xd � 0.96;
DPnd � 1800
GA

7� 25 70 0.30 40.5 5.88 539 0.16196 wx � 10; wQ � 1;
90 0.98 80.8 wt � 10�4; wDPn � 50;

xd � 0.96;
DPnd � 1800
SQP

7
 22.2 77.7 0.63 37.3 7.23 630 0.16194 wx � 10; wQ � 1;
90 0.98 70.2 wt � 10�4; wDPn � 50;

xd � 0.96;
DPnd � 1800
HM

8 10.5 83.8 0.22 16.25 5.92 1905 19.5205 wx � 10; wQ � 3;
76.9 0.96 88.9 wt � 10�5; wDPn � 500;

xd � 0.96;
DPnd � 1800
GA

10� 10 70.9 0.36 63.3 4.86 1799 14.6343 wx � 10; wQ � 3;
82.6 0.97 112.4 wt � 10�5; wDPn � 500;

xd � 0.96;
DPnd � 1800
SQP

10
 10 86.5 0.88 33.8 3.718 1797 11.2179 wx � 10; wQ � 3;
59.4 0.95 70 wt � 10�5; wDPn � 500;

xd � 0.96;
DPnd � 1800
HM
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which the first temperature was high, which would
mean a big conversion, followed by a decrease in tem-
perature, necessary for a narrow polydispersity. Case 2

is representative, with T1 � 106°C and T2 � 75°C.

For the situation shown in Table IV (objective func-
tion J1 and two temperature steps), wx � 10, wQ � 1,
and HM are recommended.

Table V shows optimizations based on objective
function J2, achieved in two temperature steps.

In optimizations 5 and 6, because wt � 0 and wQ � 0,
we sought to reach some imposed final values for
conversion and degree of polymerization. If, as in
optimization 5, reaching the objectives required use of

the hybrid method, in optimization 6, in which the
weight of polymerization degree was decreased, the
SQP method led to the imposed values of conversion
and number-average degree of polymerization.

In optimizations 7 and 8, the objective function was
supplemented by introducing values for the weights
attached to time and the polydispersity index. A value
too small for degree of polymerization compared to
the imposed value (in optimization 7) determined an
increase in the weight of this parameter in optimiza-
tion 8, in which greater importance also was given to
the polydispersity index by increasing its weight
threefold. Thus, optimization 10
, based on the hybrid

TABLE VI
Optimization of MMA Polymerization Achieved with the Objective Function J1 in Three Temperature Steps

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn J1

Observations
(weights, method)

11 19.6 59.9 0.44 120.3 2.53 3953 3.58666 wx � 10; wQ � 1; wt � 0;
80.6 0.80 124.8 GA
53.1 0.89 180.4

11� 10 70.4 0.44 72.6 2.54 2876 3.21353 wx � 10; wQ � 1; wt � 0;
90 0.86 77.1 SQP
65.1 0.93 124.7

11
 10 70.4 0.44 72.6 2.54 2876 3.21353 wx � 10; wQ � 1; wt � 0;
90 0.86 77.1 HM
65.1 0.93 124.7

12 35.6 100.3 0.95 13.0 3.137 362 3.91177 wx � 20; wQ � 1; wt � 0;
46.8 0.96 400 GA

12� 50 90 0.88 15.1 3.39 488 4.19749 wx � 20; wQ � 1; wt � 0;
53.9 0.96 384.6 SQP
53.5 0.96 400

12
 10 71.9 0.43 65.0 2.6 2458 3.80261 wx � 20; wQ � 1; wt � 0;
90 0.87 70.0 HM
70.5 0.95 116.9

13 16.1 60.2 0.42 124.6 2.43 4127 8.50162 wx � 10; wQ � 3; wt � 0;
81.9 0.83 130.1 GA
48.4 0.88 174.3

13� 10 69.2 0.45 78.9 2.42 3239 8.12611 wx � 10; wQ � 3; wt � 0;
90 0.85 83.1 SQP
58.6 0.91 129.4

13
 50 71.4 0.49 38.4 2.34 1102 8.01123 wx � 10; wQ � 3; wt � 0;
90 0.84 40.9 HM
55.2 0.90 87.8

14 20.1 61.2 0.41 105.0 2.55 3220 9.63184 wx � 20; wQ � 3; wt � 0;
82 0.82 110.8 GA
55.1 0.90 164.7

14� 21 70.3 0.47 56.5 2.47 1917 9.05126 wx � 20; wQ � 3; wt � 0;
90 0.85 59.9 SQP
60.3 0.92 108.1

14
 10 69.8 0.44 75.6 2.47 3049 8.9322 wx � 20; wQ � 3; wt � 0;
90 0.86 79.9 HM
62.4 0.93 127.5

15 18.6 58.6 0.42 133.5 2.49 4070 9.76352 wx � 20; wQ � 3; wt � 10�5;
80.7 0.81 138.9 GA
52.2 0.89 192.7

15� 21.3 70.5 0.47 55.6 2.47 1892 9.11573 wx � 20; wQ � 3; wt � 10�5;
90 0.85 58.9 SQP
60.3 0.92 107.1

15
 10 70 0.44 74.7 2.48 3028 9.00829 wx � 20; wQ � 3; wt � 10�5;
90 0.86 78.9 HM
62.5 0.93 126.3
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TABLE VII
Comparison of Three Techniques Used in MMA Optimization: GA, SQP, and HM

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn J2

Observations
(weights, method)

16 23.7 64.2 0.33 69.2 6.44 1800 0.00105 wx � 20; wQ � 0; wt � 0;
68.6 0.67 84.2 wDPn � 500;
72.7 0.95 134.6 xd � 0.96;

DPnd � 1800
GA

16� 24.8 69.9 0.25 34.8 6.14 1800 0.00444 wx � 20; wQ � 0; wt � 0;
69.9 0.64 57.9 wDPn � 500;
69.7 0.95 111.2 xd � 0.96;

DPnd � 1800
SQP

17 21.1 60.5 0.23 73.6 5.22 2000 0.00017 wx � 20; wQ � 0; wt � 0;
73.5 0.71 96.1 wDPn � 500;
71 0.95 147.7 xd � 0.95;

DPnd � 2000
GA

17� 23.9 69.2 0.28 41.1 5.72 2000 0.0017 wx � 20; wQ � 0; wt � 0;
69.8 0.91 81.8 wDPn � 500;
68.1 0.94 111.9 xd � 0.95;

DPnd � 2000
SQP

18 37.2 66.2 0.32 48.2 3.48 999 0.00071 wx � 20; wQ � 0; wt � 0;
84.9 0.86 57.4 wDPn � 500;
69.7 0.95 104.2 xd � 0.95;

DPnd � 1000
GA

18� 40.5 77 0.10 6.1 4.76 1000 0.00119 wx � 20; wQ � 0; wt � 0;
76.9 0.84 33.3 wDPn � 500;
68.6 0.94 82.5 xd � 0.95;

DPnd � 1000
SQP

19 33.6 66.7 0.46 60.7 2.59 1846 8.23271 wx � 10; wQ � 3; wt � 10�5;
88 0.79 63.6 wDPn � 50;
49.1 0.88 119.9 xd � 0.96;

DPnd � 1800
GA

19� 33 67.5 0.48 58.7 2.36 1799 7.15048 wx � 10; wQ � 3; wt � 10�5;
88.6 0.84 61.5 wDPn � 50;
48.3 0.88 102.3 xd � 0.96;

DPnd � 1800
SQP

19
 33.6 67.3 0.48 59.08 2.36 1799 7.21131 wx � 10; wQ � 3; wt � 10�5;
88.4 0.84 61.87 wDPn � 50;
47.9 0.88 102.3 xd � 0.96;

DPnd � 1800
HM

20 32.7 66.8 0.47 61.3 3.75 1810 11.2814 wx � 10; wQ � 3; wt � 0;
79.9 0.73 64.2 wDPn � 500;
65 0.93 119.9 xd � 0.96;

DPnd � 1800
GA

20� 35.9 66.5 0.48 60.7 2.36 1799 7.1494 wx � 10; wQ � 3; wt � 0;
87.7 0.84 63.6 wDPn � 500;
47.6 0.88 104.7 xd � 0.96;

DPnd � 1800
SQP

20
 32,3 67.7 0.48 58.5 2.36 1799 7.1495 wx � 10; wQ � 3; wt � 0;
88.8 0.84 61.2 wDPn � 500;
48.5 0.88 102.3 xd � 0.96;

DPnd � 1800
HM

Table VII Continued
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method, showed the best results for the objectives of
the J2 function.

For the optimizations shown in Table V (function J2
and two temperature steps), good results were obtained
with wx � 10, wQ � 3, wDPn � 500, and wt � 10�5. From
the point of view of the thermal regime, increased or
decreased temperatures could be used because J2 sup-
poses many objectives to be reached simultaneously.

The same procedure (the use of objective functions
J1 and J2) was applied to obtain the initiator concen-
tration and three temperatures as decision variables.
Table VI presents several examples of such optimiza-
tions, corresponding to the objective function J1.

Optimizations 11–14 had two objectives, combined in
a weighted manner in J1 function: monomer conversion
and polymer polydispersity at the end of the reaction. In
the last optimization (groups 15, 15�, 15
), time minimi-
zation was added as an objective. Optimization 12 was
achieved in two temperature steps (the values of tem-
peratures T2 and T3 were found to be equal).

A first observation concerning the data in Table VI
is that all the optimizations corresponding to the hy-
brid method had a thermal regime in which T1 � T2
� T3, that is, an increase followed by a decrease in
temperature. This was the most frequently encoun-
tered case, but not the only one. Other optimizations
(not included in Table VI) showed a different hierar-
chy of the three temperature steps.

Optimizations with different weights were achieved,
thus increasing the importance of a certain objective. The
increase from 10 to 20 of the weight attached to the
conversion resulted in a bigger conversion at the end of
the reaction (0.96 for wx � 20, case 12�, compared to 0.93
for wx � 10, case 11�). Similarly, wQ � 3 compared to wQ

� 1 led to smaller values for the polydispersity index of
the polymer (Q � 2.54 in 11
 and Q � 2.34 in 13
).

The minimal value of the J1 criterion means optimi-
zation from the mathematical point of view. However,

the technological factors allow the choosing of an al-
ternative, depending on the aimed purpose, that is,
the properties of interest. We must keep in mind that
when one objective was improved, the other wors-
ened. For example, increasing the wx weight from 10 to
20 (optimization 12 compared to optimization 11)
caused an increase in conversion, but also an increase
in the polydispersity index.

A comparison of optimizations achieved with the
same objective function and with the same weight
values but using different solving methods (GA and
SQP) (Table VI) did not allow a decision to be made as
to which of the two methods provided better results.
For example, the GA method proved to be better in
case 12 and the SQP methd in cases 11, 13, 14, and 15.
The same thing can be seen in Table V for similar opti-
mizations. In all examples shown in Table VI, it can be
seen that the hybrid method led to the best results.

The optimizations presented in Table VI showed
different aspects of the multiobjective optimization
achieved with a scalar function in which the objectives
were combined in a weighted manner. The weights wx

� 20 and wQ � 3 were the best values for high con-
version and narrow polydispersity.

Table VII shows a comparison of examples of opti-
mizations achieved with objective function J2 and was
solved with the three methods.

In optimizations 16 –18, the J2 function has a par-
ticular form, given by wQ � 0 and wt � 0. These
optimizations were designed for different imposed
values of conversion and number-average polymer-
ization degree (case 16: xd � 0.96 and DPnd � 1800;
case 17: xd � 0.95 and DPnd � 2000; case 18: xd � 0.95
and DPnd � 1000), while keeping the weights con-
stant (wx � 20, wDPn � 500). Because these desired
values were met by the GA and SQP methods (cases
16 –18), the hybrid method was no longer consid-

TABLE VII
Continued

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn J2

Observations
(weights, method)

21 31.1 66.1 0.47 65.8 3.65 1840 11.9527 wx � 20; wQ � 3; wt � 10�5;
80 0.74 68.7 wDPn � 500;
66 0.94 123.5 xd � 0.96;

DPnd � 1800
GA

21� 10 86.7 0.89 33.9 3.67 1797 13.4317 wx � 20; wQ � 3; wt � 10�5;
43.3 0.99 400 wDPn � 500;

xd � 0.96;
DPnd � 1800
SQP

21
 26.6 70.1 0.48 52.3 2.37 1799 7.78648 wx � 20; wQ � 3; wt � 10�5;
90 0.85 56.1 wDPn � 500;
48.2 0.88 88.9 xd � 0.96;

DPnd � 1800
HM
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ered necessary because its main purpose was to
enhance the results of the previous methods.

The thermal regime was different depending on
the values imposed for conversion, degree of poly-
merization, or polydispersity index and their rela-
tive importance established through the weights. In
most cases, the first temperature step was increas-
ing, followed by a decreasing step.

In optimizations 19–21 minimization of the polydis-
persity index and the reaction time were sought, in
addition to the values imposed for conversion and
degree of polymerization.

If a relatively small polydispersity index was ob-
tained (2.4 in optimizations 20� and 21
 and the de-
sired value for the degree of polymerization), the ob-
jective related to the desired value for conversion was
not achieved (20�), even if its weight increased (21
).
By accepting a greater polydispersity index (greater
than 3, case 20), acceptable values were obtained for
conversion and degree of polymerization. It was ob-
served that with the use of a technological criterion for
evaluating the results, the value of the objective func-
tion was of little importance. Given that the objective
function includes four partial objectives, a compro-
mise between these values must be accepted, depend-
ing on the practical goals considered.

In Table VII, based on the objective function J2,
different values for xd and DPn, for the weights and
different solving methods were chosen. Usually, the
optimizations that were compared differed in the
value of a single parameter (weight, method, or value
imposed) in order to establish its influence.

In most cases, the hybrid method improved the
results obtained with GA because it benefitted from
good starting points. Table VIII shows the optimiza-
tions achieved with the GA and SQP methods in sim-
ilar conditions, providing additional considerations
about the optimization methods we used. Several
pairs (n–n�) were considered for comparison. In Table
VIII the method selected, which was based on the
quality of its results, was: GA for the pairs (11–11�),
17–17�), (18–18�) and SQP for the pairs (13–13�), (19–
19�), and (20–20�).

The optimizations retained the same numbers from
previous tables. Neither method was found to be bet-
ter than the other. Optimizations 11
 and 13
 (Table VI)
and 19
 and 20
 (Table VII) were made by HM, which
improved the prior results.

No better results were obtained with the SQP
method than with the GA method. The results of the
SQP method depend on its starting point. Therefore, it
can be applied several times, with different initial
values in the search space, or even successively, and
the solution found can be a starting point for a new
SQP search. Using either SQP or GA, the working
procedure can be done in several ways, depending on
the user’s experience, the goal of the problem, and the

available knowledge about the process. The way the
objective function was formulated and the adequate
weight chosen must be also considered. The present
study mainly focused on presenting a working proce-
dure, and therefore in this article absolute conclusions
cannot be formulated, only recommendations.

Most articles in the literature on optimization of
polymerization processes with genetic algorithms re-
ported that this method provided better results com-
pared to classical solutions. We have shown that ge-
netic algorithms do not always give the best results;
however, the hybrid method, which combines a ge-
netic algorithm with the sequential quadratic proce-
dure, is efficient.

In the present study, optimizations achieved under
similar conditions (objective function, weights) were
compared, the results of which were represented by
two or three temperature steps. Table IX lists several
examples that demonstrate that a third temperature
step improved the optimization results. The situations
compared were grouped and marked two by two.
Thus, from comparing 2
 to 11
, 22
 to 13
, 23
 to 14
,
24
 to 19
, 25
 to 20
, and 26
 to 21
, it can be seen that
better results occurred with the latter of each pair (11
,
13
, 14
, 19
, 20
, and 21
), corresponding to a thermal
regime formed of three isothermal temperature steps.

Figure 1 presents the thermal regimes of some of the
optimizations achieved in three temperature steps; 11

and 13
 were obtained with the J1 function and 19
 and
21
 with the J2 function. In most cases, the obtained
optimal regime was formed of a temperature step that
was increasing, followed by a step that was decreas-
ing. The intermediate temperature corresponded to a
short time interval. The optimal thermal regime de-
pended on the conditions in which optimization was
achieved: proposed objectives, weight values, or final
values imposed for conversion and degree of poly-
merization.

Choosing the weight values was not a complicated
matter. In a few trials, adequate weights for the pro-
posed objectives could be estimated, depending on
their relative importance. As the tables with the opti-
mization results show, the most frequent values for
the weights in the present study were: wx � 10, 20; wQ

� 1, 3; and wDPn � 50, 500. Manipulating these
weights allowed the user to have one objective take
precedence over another, giving the optimization
method flexibility.

CONCLUSIONS

The main goal of this article was to outline a general
strategy for applying optimization to polymerization
processes, on the basis of the results obtained and the
method’s accessibility.

In general, optimization of a polymerization process
means simultaneously achieving several objectives

3692 CURTEANU, LEON, AND GÂLEA



TABLE VIII
Comparison of the SQP and GA Methods

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn

Objective
function

Observations
(weights, method)

11 19.6 59.9 0.44 120.3 2.53 3953 3.586660 J1
80.6 0.80 124.9 wx � 10; wQ � 1;
53.1 0.89 180.4 wt � 0; wDPn � 0;

GA
11� 10 70.4 0.44 72.6 2.54 2876 3.21353 J1

90 0.86 77.1 wx � 10; wQ � 1;
65.1 0.93 124.7 wt � 0; wDPn � 0;

SQP
13 16.1 60.2 0.42 124.6 2.43 4127 8.501617 J1

81.9 0.83 130.1 wx � 10; wQ � 3;
48.4 0.88 174.3 wt � 0; wDPn � 0;

GA
13� 10 69.2 0.45 78.9 2.42 3239 8.12611 J1

90 0.85 83.1 wx � 10; wQ � 3;
58.6 0.91 129.4 wt � 0; wDPn � 0;

SQP
17 21.1 60.5 0.23 73.6 5.22 2001 0.000174 J2

73.5 0.71 96.1 wx � 20; wQ � 0;
71 0.95 147.7 wt � 0; wDPn � 500;

xd � 0.95;
DPnd � 2000;
GA

17� 23.9 69.2 0.28 41.0 5.72 2000 0.0017 J2
69.8 0.91 81.8 wx � 20; wQ � 0;
68.1 0.94 111.9 wt � 0; wDPn � 500;

xd � 0.95;
DPnd � 2000;
SQP

18 37.2 66.2 0.32 48.2 3.48 999 0.00071 J2
84.9 0.86 57.4 wx � 20; wQ � 0;
69.7 0.95 104.2 wt � 0; wDPn � 500;

xd � 0.95;
DPnd � 1000;
GA

18� 40.5 77 0.10 6.1 4.76 1000 0.001198 J2
76.9 0.84 33.3 wx � 20; wQ � 0;
68.6 0.94 82.5 wt � 0; wDPn � 500;

xd � 0.95;
DPnd � 1000;
SQP

19 33.6 66.7 0.461 60.7 2.59 1846 8.232717 J2
88 0.79 63.6 wx � 10; wQ � 3;

49.1 0.88 119.9
wt � 10�5; wDPn �
50;
xd � 0.96;
DPnd � 1800;
GA

19� 33 67.5 0.48 58.7 2.36 1799 7.15048 J2
88.6 0.84 61.5 wx � 10; wQ � 3;

48.3 0.88 102.3
wt � 10�5; wDPn �
50;
xd � 0.96;
DPnd � 1800;
SQP

20 32.7 66.8 0.47 61.3 3.75 1810 11.2814 J2
79.9 0.73 64.2 wx � 10; wQ � 3;
65 0.93 119.9 wt � 0; wDPn � 500;

xd � 0.96;
DPnd � 1800;
GA

20� 35.9 66.5 0.48 60.7 2.36 1799 7.1494 J2
87.7 0.84 63.6 wx � 10; wQ � 3;
47.6 0.88 104.7 wt � 0; wDPn � 500;

xd � 0.96;
DPnd � 1800;
SQP



that are often contradictory in nature. Therefore, solv-
ing such a problem is accompanied by difficulties,
beginning with the way of formulating the objective

function and continuing with the choice of working
procedure and the selection of results from more pos-
sible options. It is not sufficient to handle optimization

TABLE IX
Comparison of Optimizations Achieved in Two and Three Temperature Steps

No.
I0

(mol/m3)
T

(°C) x
t

(min) Q DPn

Objective
function

Observations
(weights, method)

2
 39.1 106.1 0.93 8.80 2.83 278 3.24374 J1
74.8 0.96 35.38 wx � 10; wQ � 1;

wt � 0
HM

11
 10 70.4 0.44 72.6 2.54 2876 3.21353 J1
90 0.86 77.1 wx � 10; wQ � 1; wt � 0;
65.1 0.93 124.7 HM

22
 10.1 89.3 0.26 13.2 3.93 857 11.8964 J1
97.4 0.99 49.3 wx � 10; wQ � 3; wt � 0;

HM
13
 50 71.4 0.49 38.4 2.34 1102 8.01123 J1

90 0.84 40.9 wx � 10; wQ � 3; wt � 0;
55.2 0.90 87.8 wt � 0;

HM
23
 10 48 0.37 384.4 2.61 9595 10.3774 J1

72.1 0.87 400 wx � 20; wQ � 3; wt � 0;
HM

14
 10 69.8 0.44 75.6 2.47 3049 8.9322 J1
90 0.86 79.9 wx � 20; wQ � 3; wt � 0;
62.4 0.93 127.5 HM

24
 10 86.7 0.88 33.4 3.71 1773 11.2078 J2
59.6 0.92 69.5 wx � 10; wQ � 3;

wt � 10�5; wDPn � 50;
x2 � 0.96;
DPnd � 1800
HM

19
 33.6 67.3 0.48 59.08 2.36 1799 7.21131 J2
88.4 0.84 61.87 wx � 10; wQ � 3;
47.9 0.88 102.3 wt � 10�5; wDPn � 50;

xd � 0.96;
DPnd � 1800
HM

25
 10 86.5 0.88 33.7 3.72 1773 11.1757 J2
59.5 0.92 70.5 wx � 10; wQ � 3;

wt � 0; wDPn � 500;
xd � 0.96;
DPnd � 1800
HM

20
 32,3 67.7 0.48 58.5 2.36 1799 7.1495 J2
88.8 0.84 61.2 wx � 10; wQ � 3;
48.5 0.88 102.3 wt � 0; wDPn � 500;

xd � 0.96;
DPnd � 1800
HM

26
 10 86.5 0.88 33.8 3.72 1797 11.2386 J2
59.9 0.92 70.7 wx � 20; wQ � 3;

wt � 10�5; wDPn � 500;
xd � 0.96;
DPnd � 1800
HM

21
 26.6 70.1 0.48 53.2 2.37 1799 7.78648 J2
90 0.85 56.1 wx � 20; wQ � 3;
48.2 0.88 88.9 wt � 10�5; wDPn � 500;

xd � 0.96;
DPnd � 1800
HM
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from a mathematical point of view alone. This is ex-
tremely difficult because of the complexity of the
problem. User decision in result selection allows tech-
nological considerations to be added to the objective
function.

Our study combined several objectives into a scalar
function in a weighted manner: minimization of poly-
dispersity index, minimization of reaction time,
achievement of imposed values for conversion, and
number-average polymerization degree. The decision
variables were initial concentration of the initiator and
the temperature formed by isothermal steps.

The conclusions came from more than 100 optimi-
zations achieved, only some of which were chosen to
be presented as examples. The study did not intend to
obtain unique results in the form of the best optimi-
zation results from a mathematical point of view; in-
stead, it sought to describe the working procedure,
focusing on choosing the optimization method and on
the possibility of manipulating and combining the
algorithms frequently used in optimization.

Thus, the procedure can be organized into the fol-
lowing steps:

• Attempts are made with different weight values to
select those that lead to achievement of the pro-
posed objectives. Often, simultaneous achievement
of all the objectives is impossible, as they are con-
tradictory in nature. In such cases, manipulating the
weight values is a means to focus interest on user-
chosen objectives, in conformity with the technolog-
ical requirements of the process.

• Different optimization methods were used for
comparison, and they were evaluated on the basis
of their optimization results and ease with which

they can be used productively. The presented
methods, SQP and GA, as well as their combina-
tion (e.g., HM), are trustworthy.

• For temperature as a decision variable, several
isothermal steps were chosen in order to compro-
mise between their number and the results corre-
sponding to the optimal regime. We tried two and
three temperature steps, and the latter is recom-
mended. Increasing the number of temperature
steps may be a possible way to improve optimi-
zation results.

In conclusion, this study has shown that a multiob-
jective scalar function, properly manipulated, is easy
to use and provides accurate results. Also, the impor-
tance of user decision must be emphasized. The pres-
ence of this step is not a disadvantage of the optimi-
zation, but a favorable opportunity to consider tech-
nological criteria.
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Figure 1 Thermal regimes in MMA polymerization opti-
mization.
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